\(\int (c+d x)^{3/2} \cos (a+b x) \sin ^3(a+b x) \, dx\) [68]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [C] (verification not implemented)
   Giac [C] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 24, antiderivative size = 351 \[ \int (c+d x)^{3/2} \cos (a+b x) \sin ^3(a+b x) \, dx=-\frac {(c+d x)^{3/2} \cos (2 a+2 b x)}{8 b}+\frac {(c+d x)^{3/2} \cos (4 a+4 b x)}{32 b}+\frac {3 d^{3/2} \sqrt {\frac {\pi }{2}} \cos \left (4 a-\frac {4 b c}{d}\right ) \operatorname {FresnelS}\left (\frac {2 \sqrt {b} \sqrt {\frac {2}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right )}{512 b^{5/2}}-\frac {3 d^{3/2} \sqrt {\pi } \cos \left (2 a-\frac {2 b c}{d}\right ) \operatorname {FresnelS}\left (\frac {2 \sqrt {b} \sqrt {c+d x}}{\sqrt {d} \sqrt {\pi }}\right )}{64 b^{5/2}}+\frac {3 d^{3/2} \sqrt {\frac {\pi }{2}} \operatorname {FresnelC}\left (\frac {2 \sqrt {b} \sqrt {\frac {2}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right ) \sin \left (4 a-\frac {4 b c}{d}\right )}{512 b^{5/2}}-\frac {3 d^{3/2} \sqrt {\pi } \operatorname {FresnelC}\left (\frac {2 \sqrt {b} \sqrt {c+d x}}{\sqrt {d} \sqrt {\pi }}\right ) \sin \left (2 a-\frac {2 b c}{d}\right )}{64 b^{5/2}}+\frac {3 d \sqrt {c+d x} \sin (2 a+2 b x)}{32 b^2}-\frac {3 d \sqrt {c+d x} \sin (4 a+4 b x)}{256 b^2} \]

[Out]

-1/8*(d*x+c)^(3/2)*cos(2*b*x+2*a)/b+1/32*(d*x+c)^(3/2)*cos(4*b*x+4*a)/b+3/1024*d^(3/2)*cos(4*a-4*b*c/d)*Fresne
lS(2*b^(1/2)*2^(1/2)/Pi^(1/2)*(d*x+c)^(1/2)/d^(1/2))*2^(1/2)*Pi^(1/2)/b^(5/2)+3/1024*d^(3/2)*FresnelC(2*b^(1/2
)*2^(1/2)/Pi^(1/2)*(d*x+c)^(1/2)/d^(1/2))*sin(4*a-4*b*c/d)*2^(1/2)*Pi^(1/2)/b^(5/2)-3/64*d^(3/2)*cos(2*a-2*b*c
/d)*FresnelS(2*b^(1/2)*(d*x+c)^(1/2)/d^(1/2)/Pi^(1/2))*Pi^(1/2)/b^(5/2)-3/64*d^(3/2)*FresnelC(2*b^(1/2)*(d*x+c
)^(1/2)/d^(1/2)/Pi^(1/2))*sin(2*a-2*b*c/d)*Pi^(1/2)/b^(5/2)+3/32*d*sin(2*b*x+2*a)*(d*x+c)^(1/2)/b^2-3/256*d*si
n(4*b*x+4*a)*(d*x+c)^(1/2)/b^2

Rubi [A] (verified)

Time = 0.69 (sec) , antiderivative size = 351, normalized size of antiderivative = 1.00, number of steps used = 16, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.292, Rules used = {4491, 3377, 3387, 3386, 3432, 3385, 3433} \[ \int (c+d x)^{3/2} \cos (a+b x) \sin ^3(a+b x) \, dx=\frac {3 \sqrt {\frac {\pi }{2}} d^{3/2} \sin \left (4 a-\frac {4 b c}{d}\right ) \operatorname {FresnelC}\left (\frac {2 \sqrt {b} \sqrt {\frac {2}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right )}{512 b^{5/2}}-\frac {3 \sqrt {\pi } d^{3/2} \sin \left (2 a-\frac {2 b c}{d}\right ) \operatorname {FresnelC}\left (\frac {2 \sqrt {b} \sqrt {c+d x}}{\sqrt {d} \sqrt {\pi }}\right )}{64 b^{5/2}}+\frac {3 \sqrt {\frac {\pi }{2}} d^{3/2} \cos \left (4 a-\frac {4 b c}{d}\right ) \operatorname {FresnelS}\left (\frac {2 \sqrt {b} \sqrt {\frac {2}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right )}{512 b^{5/2}}-\frac {3 \sqrt {\pi } d^{3/2} \cos \left (2 a-\frac {2 b c}{d}\right ) \operatorname {FresnelS}\left (\frac {2 \sqrt {b} \sqrt {c+d x}}{\sqrt {d} \sqrt {\pi }}\right )}{64 b^{5/2}}+\frac {3 d \sqrt {c+d x} \sin (2 a+2 b x)}{32 b^2}-\frac {3 d \sqrt {c+d x} \sin (4 a+4 b x)}{256 b^2}-\frac {(c+d x)^{3/2} \cos (2 a+2 b x)}{8 b}+\frac {(c+d x)^{3/2} \cos (4 a+4 b x)}{32 b} \]

[In]

Int[(c + d*x)^(3/2)*Cos[a + b*x]*Sin[a + b*x]^3,x]

[Out]

-1/8*((c + d*x)^(3/2)*Cos[2*a + 2*b*x])/b + ((c + d*x)^(3/2)*Cos[4*a + 4*b*x])/(32*b) + (3*d^(3/2)*Sqrt[Pi/2]*
Cos[4*a - (4*b*c)/d]*FresnelS[(2*Sqrt[b]*Sqrt[2/Pi]*Sqrt[c + d*x])/Sqrt[d]])/(512*b^(5/2)) - (3*d^(3/2)*Sqrt[P
i]*Cos[2*a - (2*b*c)/d]*FresnelS[(2*Sqrt[b]*Sqrt[c + d*x])/(Sqrt[d]*Sqrt[Pi])])/(64*b^(5/2)) + (3*d^(3/2)*Sqrt
[Pi/2]*FresnelC[(2*Sqrt[b]*Sqrt[2/Pi]*Sqrt[c + d*x])/Sqrt[d]]*Sin[4*a - (4*b*c)/d])/(512*b^(5/2)) - (3*d^(3/2)
*Sqrt[Pi]*FresnelC[(2*Sqrt[b]*Sqrt[c + d*x])/(Sqrt[d]*Sqrt[Pi])]*Sin[2*a - (2*b*c)/d])/(64*b^(5/2)) + (3*d*Sqr
t[c + d*x]*Sin[2*a + 2*b*x])/(32*b^2) - (3*d*Sqrt[c + d*x]*Sin[4*a + 4*b*x])/(256*b^2)

Rule 3377

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[(-(c + d*x)^m)*(Cos[e + f*x]/f), x]
+ Dist[d*(m/f), Int[(c + d*x)^(m - 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && GtQ[m, 0]

Rule 3385

Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Cos[f*(x^2/d)],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3386

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[f*(x^2/d)], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3387

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) +
f*x]/Sqrt[c + d*x], x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c
, d, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]

Rule 3432

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelS[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 3433

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelC[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 4491

Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int[E
xpandTrigReduce[(c + d*x)^m, Sin[a + b*x]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0]
&& IGtQ[p, 0]

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {1}{4} (c+d x)^{3/2} \sin (2 a+2 b x)-\frac {1}{8} (c+d x)^{3/2} \sin (4 a+4 b x)\right ) \, dx \\ & = -\left (\frac {1}{8} \int (c+d x)^{3/2} \sin (4 a+4 b x) \, dx\right )+\frac {1}{4} \int (c+d x)^{3/2} \sin (2 a+2 b x) \, dx \\ & = -\frac {(c+d x)^{3/2} \cos (2 a+2 b x)}{8 b}+\frac {(c+d x)^{3/2} \cos (4 a+4 b x)}{32 b}-\frac {(3 d) \int \sqrt {c+d x} \cos (4 a+4 b x) \, dx}{64 b}+\frac {(3 d) \int \sqrt {c+d x} \cos (2 a+2 b x) \, dx}{16 b} \\ & = -\frac {(c+d x)^{3/2} \cos (2 a+2 b x)}{8 b}+\frac {(c+d x)^{3/2} \cos (4 a+4 b x)}{32 b}+\frac {3 d \sqrt {c+d x} \sin (2 a+2 b x)}{32 b^2}-\frac {3 d \sqrt {c+d x} \sin (4 a+4 b x)}{256 b^2}+\frac {\left (3 d^2\right ) \int \frac {\sin (4 a+4 b x)}{\sqrt {c+d x}} \, dx}{512 b^2}-\frac {\left (3 d^2\right ) \int \frac {\sin (2 a+2 b x)}{\sqrt {c+d x}} \, dx}{64 b^2} \\ & = -\frac {(c+d x)^{3/2} \cos (2 a+2 b x)}{8 b}+\frac {(c+d x)^{3/2} \cos (4 a+4 b x)}{32 b}+\frac {3 d \sqrt {c+d x} \sin (2 a+2 b x)}{32 b^2}-\frac {3 d \sqrt {c+d x} \sin (4 a+4 b x)}{256 b^2}+\frac {\left (3 d^2 \cos \left (4 a-\frac {4 b c}{d}\right )\right ) \int \frac {\sin \left (\frac {4 b c}{d}+4 b x\right )}{\sqrt {c+d x}} \, dx}{512 b^2}-\frac {\left (3 d^2 \cos \left (2 a-\frac {2 b c}{d}\right )\right ) \int \frac {\sin \left (\frac {2 b c}{d}+2 b x\right )}{\sqrt {c+d x}} \, dx}{64 b^2}+\frac {\left (3 d^2 \sin \left (4 a-\frac {4 b c}{d}\right )\right ) \int \frac {\cos \left (\frac {4 b c}{d}+4 b x\right )}{\sqrt {c+d x}} \, dx}{512 b^2}-\frac {\left (3 d^2 \sin \left (2 a-\frac {2 b c}{d}\right )\right ) \int \frac {\cos \left (\frac {2 b c}{d}+2 b x\right )}{\sqrt {c+d x}} \, dx}{64 b^2} \\ & = -\frac {(c+d x)^{3/2} \cos (2 a+2 b x)}{8 b}+\frac {(c+d x)^{3/2} \cos (4 a+4 b x)}{32 b}+\frac {3 d \sqrt {c+d x} \sin (2 a+2 b x)}{32 b^2}-\frac {3 d \sqrt {c+d x} \sin (4 a+4 b x)}{256 b^2}+\frac {\left (3 d \cos \left (4 a-\frac {4 b c}{d}\right )\right ) \text {Subst}\left (\int \sin \left (\frac {4 b x^2}{d}\right ) \, dx,x,\sqrt {c+d x}\right )}{256 b^2}-\frac {\left (3 d \cos \left (2 a-\frac {2 b c}{d}\right )\right ) \text {Subst}\left (\int \sin \left (\frac {2 b x^2}{d}\right ) \, dx,x,\sqrt {c+d x}\right )}{32 b^2}+\frac {\left (3 d \sin \left (4 a-\frac {4 b c}{d}\right )\right ) \text {Subst}\left (\int \cos \left (\frac {4 b x^2}{d}\right ) \, dx,x,\sqrt {c+d x}\right )}{256 b^2}-\frac {\left (3 d \sin \left (2 a-\frac {2 b c}{d}\right )\right ) \text {Subst}\left (\int \cos \left (\frac {2 b x^2}{d}\right ) \, dx,x,\sqrt {c+d x}\right )}{32 b^2} \\ & = -\frac {(c+d x)^{3/2} \cos (2 a+2 b x)}{8 b}+\frac {(c+d x)^{3/2} \cos (4 a+4 b x)}{32 b}+\frac {3 d^{3/2} \sqrt {\frac {\pi }{2}} \cos \left (4 a-\frac {4 b c}{d}\right ) \operatorname {FresnelS}\left (\frac {2 \sqrt {b} \sqrt {\frac {2}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right )}{512 b^{5/2}}-\frac {3 d^{3/2} \sqrt {\pi } \cos \left (2 a-\frac {2 b c}{d}\right ) \operatorname {FresnelS}\left (\frac {2 \sqrt {b} \sqrt {c+d x}}{\sqrt {d} \sqrt {\pi }}\right )}{64 b^{5/2}}+\frac {3 d^{3/2} \sqrt {\frac {\pi }{2}} \operatorname {FresnelC}\left (\frac {2 \sqrt {b} \sqrt {\frac {2}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right ) \sin \left (4 a-\frac {4 b c}{d}\right )}{512 b^{5/2}}-\frac {3 d^{3/2} \sqrt {\pi } \operatorname {FresnelC}\left (\frac {2 \sqrt {b} \sqrt {c+d x}}{\sqrt {d} \sqrt {\pi }}\right ) \sin \left (2 a-\frac {2 b c}{d}\right )}{64 b^{5/2}}+\frac {3 d \sqrt {c+d x} \sin (2 a+2 b x)}{32 b^2}-\frac {3 d \sqrt {c+d x} \sin (4 a+4 b x)}{256 b^2} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 1.54 (sec) , antiderivative size = 693, normalized size of antiderivative = 1.97 \[ \int (c+d x)^{3/2} \cos (a+b x) \sin ^3(a+b x) \, dx=\frac {e^{-4 i a} \left (8 e^{2 i \left (a-\frac {b (c+d x)}{d}\right )} \left (-4 \sqrt {b} d e^{\frac {2 i b c}{d}} \sqrt {c+d x} \left (-3 i+4 b x+e^{4 i (a+b x)} (3 i+4 b x)\right )-(1-i) (4 b c+3 i d) \sqrt {d} e^{\frac {2 i b (2 c+d x)}{d}} \sqrt {\pi } \text {erf}\left (\frac {(1+i) \sqrt {b} \sqrt {c+d x}}{\sqrt {d}}\right )+(1+i) \sqrt {d} (4 i b c+3 d) e^{2 i (2 a+b x)} \sqrt {\pi } \text {erfi}\left (\frac {(1+i) \sqrt {b} \sqrt {c+d x}}{\sqrt {d}}\right )\right )-\sqrt {d} e^{-\frac {4 i b (c+d x)}{d}} \left (-4 \sqrt {b} \sqrt {d} e^{\frac {4 i b c}{d}} \sqrt {c+d x} \left (-3 i+8 b x+e^{8 i (a+b x)} (3 i+8 b x)\right )+(-1)^{3/4} (8 b c+3 i d) e^{\frac {4 i b (2 c+d x)}{d}} \sqrt {\pi } \text {erf}\left (\frac {2 \sqrt [4]{-1} \sqrt {b} \sqrt {c+d x}}{\sqrt {d}}\right )+\sqrt [4]{-1} (8 i b c+3 d) e^{4 i (2 a+b x)} \sqrt {\pi } \text {erfi}\left (\frac {2 \sqrt [4]{-1} \sqrt {b} \sqrt {c+d x}}{\sqrt {d}}\right )\right )-\frac {64 \sqrt {2} b^{3/2} c e^{2 i \left (a-\frac {b c}{d}\right )} \sqrt {c+d x} \left (e^{4 i a} \sqrt {\frac {i b (c+d x)}{d}} \Gamma \left (\frac {3}{2},-\frac {2 i b (c+d x)}{d}\right )+e^{\frac {4 i b c}{d}} \sqrt {-\frac {i b (c+d x)}{d}} \Gamma \left (\frac {3}{2},\frac {2 i b (c+d x)}{d}\right )\right )}{\sqrt {\frac {b^2 (c+d x)^2}{d^2}}}-16 b^{3/2} c e^{-\frac {4 i b c}{d}} \sqrt {c+d x} \left (-\frac {e^{8 i a} \Gamma \left (\frac {3}{2},-\frac {4 i b (c+d x)}{d}\right )}{\sqrt {-\frac {i b (c+d x)}{d}}}-\frac {e^{\frac {8 i b c}{d}} \Gamma \left (\frac {3}{2},\frac {4 i b (c+d x)}{d}\right )}{\sqrt {\frac {i b (c+d x)}{d}}}\right )\right )}{2048 b^{5/2}} \]

[In]

Integrate[(c + d*x)^(3/2)*Cos[a + b*x]*Sin[a + b*x]^3,x]

[Out]

(8*E^((2*I)*(a - (b*(c + d*x))/d))*(-4*Sqrt[b]*d*E^(((2*I)*b*c)/d)*Sqrt[c + d*x]*(-3*I + 4*b*x + E^((4*I)*(a +
 b*x))*(3*I + 4*b*x)) - (1 - I)*(4*b*c + (3*I)*d)*Sqrt[d]*E^(((2*I)*b*(2*c + d*x))/d)*Sqrt[Pi]*Erf[((1 + I)*Sq
rt[b]*Sqrt[c + d*x])/Sqrt[d]] + (1 + I)*Sqrt[d]*((4*I)*b*c + 3*d)*E^((2*I)*(2*a + b*x))*Sqrt[Pi]*Erfi[((1 + I)
*Sqrt[b]*Sqrt[c + d*x])/Sqrt[d]]) - (Sqrt[d]*(-4*Sqrt[b]*Sqrt[d]*E^(((4*I)*b*c)/d)*Sqrt[c + d*x]*(-3*I + 8*b*x
 + E^((8*I)*(a + b*x))*(3*I + 8*b*x)) + (-1)^(3/4)*(8*b*c + (3*I)*d)*E^(((4*I)*b*(2*c + d*x))/d)*Sqrt[Pi]*Erf[
(2*(-1)^(1/4)*Sqrt[b]*Sqrt[c + d*x])/Sqrt[d]] + (-1)^(1/4)*((8*I)*b*c + 3*d)*E^((4*I)*(2*a + b*x))*Sqrt[Pi]*Er
fi[(2*(-1)^(1/4)*Sqrt[b]*Sqrt[c + d*x])/Sqrt[d]]))/E^(((4*I)*b*(c + d*x))/d) - (64*Sqrt[2]*b^(3/2)*c*E^((2*I)*
(a - (b*c)/d))*Sqrt[c + d*x]*(E^((4*I)*a)*Sqrt[(I*b*(c + d*x))/d]*Gamma[3/2, ((-2*I)*b*(c + d*x))/d] + E^(((4*
I)*b*c)/d)*Sqrt[((-I)*b*(c + d*x))/d]*Gamma[3/2, ((2*I)*b*(c + d*x))/d]))/Sqrt[(b^2*(c + d*x)^2)/d^2] - (16*b^
(3/2)*c*Sqrt[c + d*x]*(-((E^((8*I)*a)*Gamma[3/2, ((-4*I)*b*(c + d*x))/d])/Sqrt[((-I)*b*(c + d*x))/d]) - (E^(((
8*I)*b*c)/d)*Gamma[3/2, ((4*I)*b*(c + d*x))/d])/Sqrt[(I*b*(c + d*x))/d]))/E^(((4*I)*b*c)/d))/(2048*b^(5/2)*E^(
(4*I)*a))

Maple [A] (verified)

Time = 0.53 (sec) , antiderivative size = 376, normalized size of antiderivative = 1.07

method result size
derivativedivides \(\frac {-\frac {d \left (d x +c \right )^{\frac {3}{2}} \cos \left (\frac {2 b \left (d x +c \right )}{d}+\frac {2 a d -2 c b}{d}\right )}{8 b}+\frac {3 d \left (\frac {d \sqrt {d x +c}\, \sin \left (\frac {2 b \left (d x +c \right )}{d}+\frac {2 a d -2 c b}{d}\right )}{4 b}-\frac {d \sqrt {\pi }\, \left (\cos \left (\frac {2 a d -2 c b}{d}\right ) \operatorname {FresnelS}\left (\frac {2 b \sqrt {d x +c}}{\sqrt {\pi }\, \sqrt {\frac {b}{d}}\, d}\right )+\sin \left (\frac {2 a d -2 c b}{d}\right ) \operatorname {FresnelC}\left (\frac {2 b \sqrt {d x +c}}{\sqrt {\pi }\, \sqrt {\frac {b}{d}}\, d}\right )\right )}{8 b \sqrt {\frac {b}{d}}}\right )}{8 b}+\frac {d \left (d x +c \right )^{\frac {3}{2}} \cos \left (\frac {4 b \left (d x +c \right )}{d}+\frac {4 a d -4 c b}{d}\right )}{32 b}-\frac {3 d \left (\frac {d \sqrt {d x +c}\, \sin \left (\frac {4 b \left (d x +c \right )}{d}+\frac {4 a d -4 c b}{d}\right )}{8 b}-\frac {d \sqrt {2}\, \sqrt {\pi }\, \left (\cos \left (\frac {4 a d -4 c b}{d}\right ) \operatorname {FresnelS}\left (\frac {2 \sqrt {2}\, b \sqrt {d x +c}}{\sqrt {\pi }\, \sqrt {\frac {b}{d}}\, d}\right )+\sin \left (\frac {4 a d -4 c b}{d}\right ) \operatorname {FresnelC}\left (\frac {2 \sqrt {2}\, b \sqrt {d x +c}}{\sqrt {\pi }\, \sqrt {\frac {b}{d}}\, d}\right )\right )}{32 b \sqrt {\frac {b}{d}}}\right )}{32 b}}{d}\) \(376\)
default \(\frac {-\frac {d \left (d x +c \right )^{\frac {3}{2}} \cos \left (\frac {2 b \left (d x +c \right )}{d}+\frac {2 a d -2 c b}{d}\right )}{8 b}+\frac {3 d \left (\frac {d \sqrt {d x +c}\, \sin \left (\frac {2 b \left (d x +c \right )}{d}+\frac {2 a d -2 c b}{d}\right )}{4 b}-\frac {d \sqrt {\pi }\, \left (\cos \left (\frac {2 a d -2 c b}{d}\right ) \operatorname {FresnelS}\left (\frac {2 b \sqrt {d x +c}}{\sqrt {\pi }\, \sqrt {\frac {b}{d}}\, d}\right )+\sin \left (\frac {2 a d -2 c b}{d}\right ) \operatorname {FresnelC}\left (\frac {2 b \sqrt {d x +c}}{\sqrt {\pi }\, \sqrt {\frac {b}{d}}\, d}\right )\right )}{8 b \sqrt {\frac {b}{d}}}\right )}{8 b}+\frac {d \left (d x +c \right )^{\frac {3}{2}} \cos \left (\frac {4 b \left (d x +c \right )}{d}+\frac {4 a d -4 c b}{d}\right )}{32 b}-\frac {3 d \left (\frac {d \sqrt {d x +c}\, \sin \left (\frac {4 b \left (d x +c \right )}{d}+\frac {4 a d -4 c b}{d}\right )}{8 b}-\frac {d \sqrt {2}\, \sqrt {\pi }\, \left (\cos \left (\frac {4 a d -4 c b}{d}\right ) \operatorname {FresnelS}\left (\frac {2 \sqrt {2}\, b \sqrt {d x +c}}{\sqrt {\pi }\, \sqrt {\frac {b}{d}}\, d}\right )+\sin \left (\frac {4 a d -4 c b}{d}\right ) \operatorname {FresnelC}\left (\frac {2 \sqrt {2}\, b \sqrt {d x +c}}{\sqrt {\pi }\, \sqrt {\frac {b}{d}}\, d}\right )\right )}{32 b \sqrt {\frac {b}{d}}}\right )}{32 b}}{d}\) \(376\)

[In]

int((d*x+c)^(3/2)*cos(b*x+a)*sin(b*x+a)^3,x,method=_RETURNVERBOSE)

[Out]

2/d*(-1/16/b*d*(d*x+c)^(3/2)*cos(2*b/d*(d*x+c)+2*(a*d-b*c)/d)+3/16/b*d*(1/4/b*d*(d*x+c)^(1/2)*sin(2*b/d*(d*x+c
)+2*(a*d-b*c)/d)-1/8/b*d*Pi^(1/2)/(b/d)^(1/2)*(cos(2*(a*d-b*c)/d)*FresnelS(2/Pi^(1/2)/(b/d)^(1/2)*b*(d*x+c)^(1
/2)/d)+sin(2*(a*d-b*c)/d)*FresnelC(2/Pi^(1/2)/(b/d)^(1/2)*b*(d*x+c)^(1/2)/d)))+1/64/b*d*(d*x+c)^(3/2)*cos(4*b/
d*(d*x+c)+4*(a*d-b*c)/d)-3/64/b*d*(1/8/b*d*(d*x+c)^(1/2)*sin(4*b/d*(d*x+c)+4*(a*d-b*c)/d)-1/32/b*d*2^(1/2)*Pi^
(1/2)/(b/d)^(1/2)*(cos(4*(a*d-b*c)/d)*FresnelS(2*2^(1/2)/Pi^(1/2)/(b/d)^(1/2)*b*(d*x+c)^(1/2)/d)+sin(4*(a*d-b*
c)/d)*FresnelC(2*2^(1/2)/Pi^(1/2)/(b/d)^(1/2)*b*(d*x+c)^(1/2)/d))))

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 316, normalized size of antiderivative = 0.90 \[ \int (c+d x)^{3/2} \cos (a+b x) \sin ^3(a+b x) \, dx=\frac {3 \, \sqrt {2} \pi d^{2} \sqrt {\frac {b}{\pi d}} \cos \left (-\frac {4 \, {\left (b c - a d\right )}}{d}\right ) \operatorname {S}\left (2 \, \sqrt {2} \sqrt {d x + c} \sqrt {\frac {b}{\pi d}}\right ) + 3 \, \sqrt {2} \pi d^{2} \sqrt {\frac {b}{\pi d}} \operatorname {C}\left (2 \, \sqrt {2} \sqrt {d x + c} \sqrt {\frac {b}{\pi d}}\right ) \sin \left (-\frac {4 \, {\left (b c - a d\right )}}{d}\right ) - 48 \, \pi d^{2} \sqrt {\frac {b}{\pi d}} \cos \left (-\frac {2 \, {\left (b c - a d\right )}}{d}\right ) \operatorname {S}\left (2 \, \sqrt {d x + c} \sqrt {\frac {b}{\pi d}}\right ) - 48 \, \pi d^{2} \sqrt {\frac {b}{\pi d}} \operatorname {C}\left (2 \, \sqrt {d x + c} \sqrt {\frac {b}{\pi d}}\right ) \sin \left (-\frac {2 \, {\left (b c - a d\right )}}{d}\right ) + 16 \, {\left (16 \, {\left (b^{2} d x + b^{2} c\right )} \cos \left (b x + a\right )^{4} + 10 \, b^{2} d x + 10 \, b^{2} c - 32 \, {\left (b^{2} d x + b^{2} c\right )} \cos \left (b x + a\right )^{2} - 3 \, {\left (2 \, b d \cos \left (b x + a\right )^{3} - 5 \, b d \cos \left (b x + a\right )\right )} \sin \left (b x + a\right )\right )} \sqrt {d x + c}}{1024 \, b^{3}} \]

[In]

integrate((d*x+c)^(3/2)*cos(b*x+a)*sin(b*x+a)^3,x, algorithm="fricas")

[Out]

1/1024*(3*sqrt(2)*pi*d^2*sqrt(b/(pi*d))*cos(-4*(b*c - a*d)/d)*fresnel_sin(2*sqrt(2)*sqrt(d*x + c)*sqrt(b/(pi*d
))) + 3*sqrt(2)*pi*d^2*sqrt(b/(pi*d))*fresnel_cos(2*sqrt(2)*sqrt(d*x + c)*sqrt(b/(pi*d)))*sin(-4*(b*c - a*d)/d
) - 48*pi*d^2*sqrt(b/(pi*d))*cos(-2*(b*c - a*d)/d)*fresnel_sin(2*sqrt(d*x + c)*sqrt(b/(pi*d))) - 48*pi*d^2*sqr
t(b/(pi*d))*fresnel_cos(2*sqrt(d*x + c)*sqrt(b/(pi*d)))*sin(-2*(b*c - a*d)/d) + 16*(16*(b^2*d*x + b^2*c)*cos(b
*x + a)^4 + 10*b^2*d*x + 10*b^2*c - 32*(b^2*d*x + b^2*c)*cos(b*x + a)^2 - 3*(2*b*d*cos(b*x + a)^3 - 5*b*d*cos(
b*x + a))*sin(b*x + a))*sqrt(d*x + c))/b^3

Sympy [F]

\[ \int (c+d x)^{3/2} \cos (a+b x) \sin ^3(a+b x) \, dx=\int \left (c + d x\right )^{\frac {3}{2}} \sin ^{3}{\left (a + b x \right )} \cos {\left (a + b x \right )}\, dx \]

[In]

integrate((d*x+c)**(3/2)*cos(b*x+a)*sin(b*x+a)**3,x)

[Out]

Integral((c + d*x)**(3/2)*sin(a + b*x)**3*cos(a + b*x), x)

Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.39 (sec) , antiderivative size = 503, normalized size of antiderivative = 1.43 \[ \int (c+d x)^{3/2} \cos (a+b x) \sin ^3(a+b x) \, dx=\frac {{\left (\frac {128 \, {\left (d x + c\right )}^{\frac {3}{2}} b^{3} \cos \left (\frac {4 \, {\left ({\left (d x + c\right )} b - b c + a d\right )}}{d}\right )}{d} - \frac {512 \, {\left (d x + c\right )}^{\frac {3}{2}} b^{3} \cos \left (\frac {2 \, {\left ({\left (d x + c\right )} b - b c + a d\right )}}{d}\right )}{d} - 48 \, \sqrt {d x + c} b^{2} \sin \left (\frac {4 \, {\left ({\left (d x + c\right )} b - b c + a d\right )}}{d}\right ) + 384 \, \sqrt {d x + c} b^{2} \sin \left (\frac {2 \, {\left ({\left (d x + c\right )} b - b c + a d\right )}}{d}\right ) + 24 \, {\left (-\left (i + 1\right ) \cdot 4^{\frac {1}{4}} \sqrt {2} \sqrt {\pi } b d \left (\frac {b^{2}}{d^{2}}\right )^{\frac {1}{4}} \cos \left (-\frac {2 \, {\left (b c - a d\right )}}{d}\right ) + \left (i - 1\right ) \cdot 4^{\frac {1}{4}} \sqrt {2} \sqrt {\pi } b d \left (\frac {b^{2}}{d^{2}}\right )^{\frac {1}{4}} \sin \left (-\frac {2 \, {\left (b c - a d\right )}}{d}\right )\right )} \operatorname {erf}\left (\sqrt {d x + c} \sqrt {\frac {2 i \, b}{d}}\right ) + 3 \, {\left (\left (i + 1\right ) \, \sqrt {2} \sqrt {\pi } b d \left (\frac {b^{2}}{d^{2}}\right )^{\frac {1}{4}} \cos \left (-\frac {4 \, {\left (b c - a d\right )}}{d}\right ) - \left (i - 1\right ) \, \sqrt {2} \sqrt {\pi } b d \left (\frac {b^{2}}{d^{2}}\right )^{\frac {1}{4}} \sin \left (-\frac {4 \, {\left (b c - a d\right )}}{d}\right )\right )} \operatorname {erf}\left (2 \, \sqrt {d x + c} \sqrt {\frac {i \, b}{d}}\right ) + 3 \, {\left (-\left (i - 1\right ) \, \sqrt {2} \sqrt {\pi } b d \left (\frac {b^{2}}{d^{2}}\right )^{\frac {1}{4}} \cos \left (-\frac {4 \, {\left (b c - a d\right )}}{d}\right ) + \left (i + 1\right ) \, \sqrt {2} \sqrt {\pi } b d \left (\frac {b^{2}}{d^{2}}\right )^{\frac {1}{4}} \sin \left (-\frac {4 \, {\left (b c - a d\right )}}{d}\right )\right )} \operatorname {erf}\left (2 \, \sqrt {d x + c} \sqrt {-\frac {i \, b}{d}}\right ) + 24 \, {\left (\left (i - 1\right ) \cdot 4^{\frac {1}{4}} \sqrt {2} \sqrt {\pi } b d \left (\frac {b^{2}}{d^{2}}\right )^{\frac {1}{4}} \cos \left (-\frac {2 \, {\left (b c - a d\right )}}{d}\right ) - \left (i + 1\right ) \cdot 4^{\frac {1}{4}} \sqrt {2} \sqrt {\pi } b d \left (\frac {b^{2}}{d^{2}}\right )^{\frac {1}{4}} \sin \left (-\frac {2 \, {\left (b c - a d\right )}}{d}\right )\right )} \operatorname {erf}\left (\sqrt {d x + c} \sqrt {-\frac {2 i \, b}{d}}\right )\right )} d}{4096 \, b^{4}} \]

[In]

integrate((d*x+c)^(3/2)*cos(b*x+a)*sin(b*x+a)^3,x, algorithm="maxima")

[Out]

1/4096*(128*(d*x + c)^(3/2)*b^3*cos(4*((d*x + c)*b - b*c + a*d)/d)/d - 512*(d*x + c)^(3/2)*b^3*cos(2*((d*x + c
)*b - b*c + a*d)/d)/d - 48*sqrt(d*x + c)*b^2*sin(4*((d*x + c)*b - b*c + a*d)/d) + 384*sqrt(d*x + c)*b^2*sin(2*
((d*x + c)*b - b*c + a*d)/d) + 24*(-(I + 1)*4^(1/4)*sqrt(2)*sqrt(pi)*b*d*(b^2/d^2)^(1/4)*cos(-2*(b*c - a*d)/d)
 + (I - 1)*4^(1/4)*sqrt(2)*sqrt(pi)*b*d*(b^2/d^2)^(1/4)*sin(-2*(b*c - a*d)/d))*erf(sqrt(d*x + c)*sqrt(2*I*b/d)
) + 3*((I + 1)*sqrt(2)*sqrt(pi)*b*d*(b^2/d^2)^(1/4)*cos(-4*(b*c - a*d)/d) - (I - 1)*sqrt(2)*sqrt(pi)*b*d*(b^2/
d^2)^(1/4)*sin(-4*(b*c - a*d)/d))*erf(2*sqrt(d*x + c)*sqrt(I*b/d)) + 3*(-(I - 1)*sqrt(2)*sqrt(pi)*b*d*(b^2/d^2
)^(1/4)*cos(-4*(b*c - a*d)/d) + (I + 1)*sqrt(2)*sqrt(pi)*b*d*(b^2/d^2)^(1/4)*sin(-4*(b*c - a*d)/d))*erf(2*sqrt
(d*x + c)*sqrt(-I*b/d)) + 24*((I - 1)*4^(1/4)*sqrt(2)*sqrt(pi)*b*d*(b^2/d^2)^(1/4)*cos(-2*(b*c - a*d)/d) - (I
+ 1)*4^(1/4)*sqrt(2)*sqrt(pi)*b*d*(b^2/d^2)^(1/4)*sin(-2*(b*c - a*d)/d))*erf(sqrt(d*x + c)*sqrt(-2*I*b/d)))*d/
b^4

Giac [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.85 (sec) , antiderivative size = 1515, normalized size of antiderivative = 4.32 \[ \int (c+d x)^{3/2} \cos (a+b x) \sin ^3(a+b x) \, dx=\text {Too large to display} \]

[In]

integrate((d*x+c)^(3/2)*cos(b*x+a)*sin(b*x+a)^3,x, algorithm="giac")

[Out]

-1/2048*(64*(sqrt(2)*sqrt(pi)*d*erf(-I*sqrt(2)*sqrt(b*d)*sqrt(d*x + c)*(I*b*d/sqrt(b^2*d^2) + 1)/d)*e^(-4*(I*b
*c - I*a*d)/d)/(sqrt(b*d)*(I*b*d/sqrt(b^2*d^2) + 1)) + sqrt(2)*sqrt(pi)*d*erf(I*sqrt(2)*sqrt(b*d)*sqrt(d*x + c
)*(-I*b*d/sqrt(b^2*d^2) + 1)/d)*e^(-4*(-I*b*c + I*a*d)/d)/(sqrt(b*d)*(-I*b*d/sqrt(b^2*d^2) + 1)) - 4*sqrt(pi)*
d*erf(-I*sqrt(b*d)*sqrt(d*x + c)*(I*b*d/sqrt(b^2*d^2) + 1)/d)*e^(-2*(I*b*c - I*a*d)/d)/(sqrt(b*d)*(I*b*d/sqrt(
b^2*d^2) + 1)) - 4*sqrt(pi)*d*erf(I*sqrt(b*d)*sqrt(d*x + c)*(-I*b*d/sqrt(b^2*d^2) + 1)/d)*e^(-2*(-I*b*c + I*a*
d)/d)/(sqrt(b*d)*(-I*b*d/sqrt(b^2*d^2) + 1)))*c^2 + d^2*((sqrt(2)*sqrt(pi)*(64*b^2*c^2 - 16*I*b*c*d - 3*d^2)*d
*erf(-I*sqrt(2)*sqrt(b*d)*sqrt(d*x + c)*(I*b*d/sqrt(b^2*d^2) + 1)/d)*e^(-4*(I*b*c - I*a*d)/d)/(sqrt(b*d)*(I*b*
d/sqrt(b^2*d^2) + 1)*b^2) - 4*I*(-8*I*(d*x + c)^(3/2)*b*d + 16*I*sqrt(d*x + c)*b*c*d + 3*sqrt(d*x + c)*d^2)*e^
(-4*(-I*(d*x + c)*b + I*b*c - I*a*d)/d)/b^2)/d^2 + (sqrt(2)*sqrt(pi)*(64*b^2*c^2 + 16*I*b*c*d - 3*d^2)*d*erf(I
*sqrt(2)*sqrt(b*d)*sqrt(d*x + c)*(-I*b*d/sqrt(b^2*d^2) + 1)/d)*e^(-4*(-I*b*c + I*a*d)/d)/(sqrt(b*d)*(-I*b*d/sq
rt(b^2*d^2) + 1)*b^2) - 4*I*(-8*I*(d*x + c)^(3/2)*b*d + 16*I*sqrt(d*x + c)*b*c*d - 3*sqrt(d*x + c)*d^2)*e^(-4*
(I*(d*x + c)*b - I*b*c + I*a*d)/d)/b^2)/d^2 - 16*(sqrt(pi)*(16*b^2*c^2 - 8*I*b*c*d - 3*d^2)*d*erf(-I*sqrt(b*d)
*sqrt(d*x + c)*(I*b*d/sqrt(b^2*d^2) + 1)/d)*e^(-2*(I*b*c - I*a*d)/d)/(sqrt(b*d)*(I*b*d/sqrt(b^2*d^2) + 1)*b^2)
 + 2*I*(4*I*(d*x + c)^(3/2)*b*d - 8*I*sqrt(d*x + c)*b*c*d - 3*sqrt(d*x + c)*d^2)*e^(-2*(-I*(d*x + c)*b + I*b*c
 - I*a*d)/d)/b^2)/d^2 - 16*(sqrt(pi)*(16*b^2*c^2 + 8*I*b*c*d - 3*d^2)*d*erf(I*sqrt(b*d)*sqrt(d*x + c)*(-I*b*d/
sqrt(b^2*d^2) + 1)/d)*e^(-2*(-I*b*c + I*a*d)/d)/(sqrt(b*d)*(-I*b*d/sqrt(b^2*d^2) + 1)*b^2) + 2*I*(4*I*(d*x + c
)^(3/2)*b*d - 8*I*sqrt(d*x + c)*b*c*d + 3*sqrt(d*x + c)*d^2)*e^(-2*(I*(d*x + c)*b - I*b*c + I*a*d)/d)/b^2)/d^2
) - 16*(sqrt(2)*sqrt(pi)*(8*b*c - I*d)*d*erf(-I*sqrt(2)*sqrt(b*d)*sqrt(d*x + c)*(I*b*d/sqrt(b^2*d^2) + 1)/d)*e
^(-4*(I*b*c - I*a*d)/d)/(sqrt(b*d)*(I*b*d/sqrt(b^2*d^2) + 1)*b) + sqrt(2)*sqrt(pi)*(8*b*c + I*d)*d*erf(I*sqrt(
2)*sqrt(b*d)*sqrt(d*x + c)*(-I*b*d/sqrt(b^2*d^2) + 1)/d)*e^(-4*(-I*b*c + I*a*d)/d)/(sqrt(b*d)*(-I*b*d/sqrt(b^2
*d^2) + 1)*b) - 8*sqrt(pi)*(4*b*c - I*d)*d*erf(-I*sqrt(b*d)*sqrt(d*x + c)*(I*b*d/sqrt(b^2*d^2) + 1)/d)*e^(-2*(
I*b*c - I*a*d)/d)/(sqrt(b*d)*(I*b*d/sqrt(b^2*d^2) + 1)*b) - 8*sqrt(pi)*(4*b*c + I*d)*d*erf(I*sqrt(b*d)*sqrt(d*
x + c)*(-I*b*d/sqrt(b^2*d^2) + 1)/d)*e^(-2*(-I*b*c + I*a*d)/d)/(sqrt(b*d)*(-I*b*d/sqrt(b^2*d^2) + 1)*b) - 16*s
qrt(d*x + c)*d*e^(-2*(I*(d*x + c)*b - I*b*c + I*a*d)/d)/b + 4*sqrt(d*x + c)*d*e^(-4*(I*(d*x + c)*b - I*b*c + I
*a*d)/d)/b - 16*sqrt(d*x + c)*d*e^(-2*(-I*(d*x + c)*b + I*b*c - I*a*d)/d)/b + 4*sqrt(d*x + c)*d*e^(-4*(-I*(d*x
 + c)*b + I*b*c - I*a*d)/d)/b)*c)/d

Mupad [F(-1)]

Timed out. \[ \int (c+d x)^{3/2} \cos (a+b x) \sin ^3(a+b x) \, dx=\int \cos \left (a+b\,x\right )\,{\sin \left (a+b\,x\right )}^3\,{\left (c+d\,x\right )}^{3/2} \,d x \]

[In]

int(cos(a + b*x)*sin(a + b*x)^3*(c + d*x)^(3/2),x)

[Out]

int(cos(a + b*x)*sin(a + b*x)^3*(c + d*x)^(3/2), x)